1. Scope of Program

1.1 Overview

The Swift Guest Investigator (GI) Program solicits proposals for basic research relevant to the Swift gamma-ray burst mission. The primary goal of this mission is to determine the origin of gamma-ray bursts (GRBs) and use these bursts to probe the early universe. Swift is also a valuable asset for obtaining multiwavelength images, spectra, and light curves on interesting Targets of Opportunity (ToOs) and other nontransient sources.

Cycle 8 observations and funding will commence on or around April 1, 2012, and last approximately 12 months. As was the case in Swift GI Cycles 4 through 7, observing time will be made available to scientists at U.S. and non-U.S. institutions to study a wide variety of astrophysical sources. Cycle 8 will also provide a new opportunity for principal investigators (PIs) to propose Large Programs with more than 100 targets or more than 100 ks exposure time per proposal. Consistent with Explorer Program policy, there will be no proprietary data rights to observations conducted with Swift. All science data will be made freely available through the Swift Quick Look web site (http://swift.gsfc.nasa.gov/cgi-bin/sdc/ql) as soon as they are received and processed. Funding through the NASA Swift GI Program is available only to scientists at U.S. institutions who are identified as the principal investigators. U.S. based co-investigators on foreign-led proposals do not qualify for funding. Funding for accepted target proposals will be initiated only after the relevant observations have begun.

The Swift GI program is intended to provide the following to participating scientists:

1. Funding (U.S. PIs only) for:
 • Theoretical investigations that will advance the Swift mission science return;
 • Correlative GRB observations involving new or enhanced IR ground-based capabilities for investigating high redshift bursts;
 • Other correlative GRB projects; and
• New Swift GRB projects.

2. Observations for:
 • non-ToO observations of non-GRB targets and ToOs (with funding for U.S. PIs);
 and
 • "Fill-in" targets (no funding will be provided).

1.2 The Swift Mission

Swift is a Medium-class Explorer mission developed at the NASA Goddard Space Flight Center. The lead domestic partners include Pennsylvania State University and Los Alamos National Laboratory. Groups in the United Kingdom and Italy made significant contributions to the hardware development and are active participants in the operations, including provision of the Italian ground station at Malindi. The Swift Mission Operations Center (MOC) is at Pennsylvania State University, and the Swift Science Center (SSC) is at NASA Goddard Space Flight Center.

The Swift mission was launched on November 20, 2004, from Cape Canaveral Air Force Station, Florida. Swift was launched into a low Earth orbit with an inclination of 21 degrees and an altitude of 600 km. The baseline mission duration was two years, but the mission has been extended beyond this initial period because of its continuing scientific productivity. The orbital lifetime of the satellite is estimated to be approximately 20 years.

The Swift spacecraft carries three science instruments: a wide-field gamma-ray Burst Alert Telescope (BAT) and two sensitive, co-aligned narrow-field instruments – the X-ray Telescope (XRT) and the Ultraviolet/Optical Telescope (UVOT). The spacecraft can be autonomously pointed to direct the XRT and UVOT toward events detected by the BAT. The BAT is a wide-field gamma-ray imager that detects GRBs and rapidly sends positions of arc-minute accuracy to the spacecraft and to the ground. The BAT operates in the 15–350 keV range and has a 1.4 steradian (half-coded) field-of-view. It has a GRB detection sensitivity ~2 times better than the Burst and Transient Source Experiment (BATSE) that flew on the Compton Gamma-Ray Observatory (CGRO). In addition to detecting GRBs, the BAT is performing a survey of the hard X-ray sky to a sensitivity of ~1 mCrab (2×10^{-11} erg cm$^{-2}$ s$^{-1}$). It also scans most of the sky each 90-minute orbit and serves as a sensitive monitor for high-energy transients. Positions and spectra of transients detected by the BAT are telemetered to the ground and distributed immediately to the community.

In response to GRB alerts from the BAT, the spacecraft reorients on a time scale of ~1 minute to point the XRT and UVOT instruments at a GRB or other transient. These instruments perform multiwavelength measurements of the bright early afterglow (and also later-time afterglow) emission to provide subarcsecond positions, precise photometry, and fine spectroscopy. The XRT is a Wolter 1 grazing incidence telescope that operates in the 0.2–10 keV band and has a field-of-view of 23.6 arcminutes with an angular resolution of 18 arcseconds (Half Power Diameter) and positional determination accuracy of better than 5 arcseconds. The detector is a cooled CCD, providing spectroscopy with a resolution $E/\Delta E \sim 10$ at 1 keV and an effective area of 120 cm2. The UVOT is a Ritchey-Chrétien folded-optics telescope operating in the 170–650
nm band. It has a field-of-view of 17 arcminutes x 17 arcminutes, with an angular resolution of 2.5 arcseconds and positional determination accuracy of 0.3 arcseconds. UVOT provides a sensitivity to afterglows of 22nd magnitude for a 1,000 second integration in its V filter, one of six filters for color photometry. It also has a white-light filter and two grisms for fine spectroscopy (E/ΔE ~ 300) of sources brighter than 17th magnitude. The narrow-field instruments yield an accurate position and X-ray spectra of the afterglow within a few minutes of the burst. This information is distributed immediately over the Internet. Data from continued observations of the afterglow are made available via Circulars and Reports on the Gamma-ray bursts Coordinates Network (GCN, http://gcn.gsfc.nasa.gov/) and on a public web site (http://swift.gsfc.nasa.gov/docs/swift/archive/). Notification of transient source detections is made through IAU Circulars (http://www.cbat.eps.harvard.edu/services/IAUC.html) and Astronomer’s Telegrams (ATELs, http://www.astronomerstelegram.org/). Data from serendipitous source detections in the field-of-view of both instruments are routinely sent to the ground for analysis.

Further information on the Swift mission may be found at http://swift.gsfc.nasa.gov/.

1.3 Types of Proposals

This Swift GI Program solicits proposals in the following areas:

- New Swift GRB projects not requiring GI-specified observatory pointing;
- Correlative GRB observations involving new or enhanced IR ground-based capabilities for investigating high-redshift bursts or other correlative GRB projects involving non-Swift instruments and observatories;
- Theoretical investigations that will advance the Swift mission science return;
- Non-GRB non-ToO observations that benefit from Swift’s unique capability of simultaneous multiwavelength coverage;
- ToO observations which promise large scientific return and capitalize on Swift’s unique capabilities of rapid repointing and multiwavelength observations;
- Large Programs requesting more than 100 targets or more than 100 ks total exposure time; and
- Fill-in targets to be observed in what would otherwise be gaps in the planned science timeline.

1.3.1 New Swift GRB project

GIs may propose to initiate their own GRB projects that supplement or enhance the Swift science return with their unique facilities, missions, capabilities, or methods. The extent to which the proposed research will enhance the science return from Swift and the demands placed upon mission resources by an investigation will be considered in the proposal evaluation process. Proposals in this category can also include changes or additions to current Swift strategies to detect and observe GRBs (Swift detected or elsewhere) and can propose innovative GRB data reduction and interpretation methods that increase our understanding of GRBs. Proposals that require changes to Swift onboard capabilities or operational procedures may require special scrutiny during the review process by the Swift team for technical feasibility and may require
formal approval by the Swift Configuration Control Board before implementation. Investigators considering such proposals are strongly urged to consult with the Swift team prior to proposal submission.

1.3.2 Swift GRB Correlative Observations

GRB correlative observations substantially augment the science return from Swift. The Swift instruments make unique measurements of GRB afterglows starting immediately following the burst. However, it is not possible to follow up all GRBs on all time scales, since viewing constraints and scheduling conflicts will preclude some Swift observations. Also, the onboard capability, although significant, does not cover all of the scientifically valuable measurements that need to be made. Candidate correlative observations that will add significantly to the Swift science include radio imaging and photometry, infrared spectroscopy (for high-z bursts redshifted out of the band pass of the UVOT), deep optical imaging and spectroscopy of the afterglow and possible host galaxy, surpassing the capability of the UVOT to reach 22nd V magnitude in 1,000 seconds, and rapid optical observations with time scales shorter than the 1-minute Swift response time.

GRBs at high redshift are particularly compelling due to their distance and rely especially on high quality infrared observations for distance estimates, since the optical counterpart is redshifted out of Swift/UVOT’s wavelength range. To encourage the development of rapid IR ground-based response to potentially high redshift GRBs, special consideration will be given to such projects. Proposals to bring new or enhanced ground-based IR capabilities online may require funding above the average award. Such budget requests will be considered provided they are strongly justified. A six-page limit for the scientific justification applies to proposals submitted in this "high-z GRB" proposal category.

For all correlative investigations funded by Swift, rapid public availability of the data or results is in the interest of the Swift mission and the astronomical community and is strongly encouraged. Public data availability for correlative studies should be discussed in these proposals and will be considered in the evaluation of these proposals.

1.3.3 Theoretical Investigations

Theoretical studies have the potential to significantly enhance the scientific impact of the Swift mission. GI proposals for such theoretical investigations are also solicited and should specifically address how the anticipated results will advance Swift science objectives.

1.3.4 Non-GRB, non-ToO observations

A total of 2 million seconds of observing time will be made available during Cycle 8 for non-GRB, non-ToO pointed observations. Swift observations in this category will be performed only as the result of an uploaded ground command through the normal planning process; slewing to the target will not occur autonomously. Non-ToO observations will have a lower scheduling priority than GRBs or ToOs and will be observed on a best-effort basis when time is available in the observing schedule. Hence, successful non-GRB/non-ToO GIs should be aware that they are
not assured 100% of the time awarded. Every effort will be made to observe 80% or more of an accepted program within schedule limitations of the mission. A single observation is defined as one requested pointing to a target. Proposers should be aware that, due to Swift’s low Earth orbit (95 minute orbit period) and scheduling priorities for other objects, any long observation may be broken up into several different pointings on different orbits. Observations longer than a few kiloseconds (ks) might be split into several days.

Non-ToO proposals are subject to the following limitations:

- The requested time per observation must be between a minimum of 1 ks and a maximum of 40 ks;
- Monitoring programs are defined as programs requiring two or more observations of the same object, each of which is considered a "visit;" and
- No more than 2,000 visits will be permitted in Cycle 8 (total for all proposal categories, including both monitoring and nonmonitoring requests).

Time-constrained observations are defined as observations that have to be performed within a certain time window. These can be ToOs or non-ToOs, either monitoring (more than one visit to a source) or nonmonitoring observations, but not "fill-in" observations. This includes phase-constrained proposals, coordinated observing campaigns with ground-based or satellite-based facilities, etc. Note that the unique scheduling requirements of Swift put severe constraints on time-constrained programs. Time-constrained observations are subject to the following limitations:

- The window duration must exceed 3 hours; and
- No more than 500 time-constrained visits will be performed during Cycle 8.

For coordinated and constrained observations, it is the proposer's responsibility to inform the Swift Science Operations Team of the observing time windows at least one week before observations start. Proposers must clearly describe how their proposal capitalizes on the unique capabilities of Swift.

There will be no time carried over from Cycle 8 to Cycle 9, except when observing for an awarded program has commenced during Cycle 8. GIs whose observing programs have not begun in Cycle 8 will be required to repropose if they wish to acquire observing time. Targets whose observations have commenced in Cycle 8 will be awarded carryover time in Cycle 9 until the proposed observations are substantially complete. Similarly, Cycle-7-accepted proposals that have not been initiated by the start of Cycle 8 will not be carried over. Cycle 7 GIs who are concerned that their programs may not be started before the end of Cycle 7 should repropose for Cycle 8.

1.3.5 ToO Observations

GI s are allowed to propose for ToOs in response to transient phenomena, including GRBs found by other observatories (but not including GRBs found by Swift). A total of at most 1 million seconds of observing time will be made available to ToO proposals, subject to the constraints
listed below. Swift ToO observations will only be performed as the result of an uploaded command by the Mission Operations Center and will not be slewed to autonomously. ToO observations will have a lower scheduling priority than GRBs and will be observed on a best-effort basis. Because of this restriction, successful ToO GIs should be aware that they are not assured 100% of the time awarded, even if their ToO is triggered. Every effort will be made to observe 80% or more of an accepted program. GIs submitting ToO proposals should note that:

- Each proposal should describe how it capitalizes on the unique capabilities of Swift;
- Proposals must give exact, detailed trigger criteria and a realistic estimate of the probability of triggering the ToO during Cycle 8; and
- Proposals must assign a priority to each ToO target based on the time criticality of the observation. From the time of the trigger, the priorities are defined as
 - Highest Priority: Observation should be performed within 4 hours;
 - High Priority: Observation should be performed within 24 hours;
 - Medium Priority: Observation can be performed within days to a week; or
 - Low Priority: Observations can be performed within weeks.

Because new GRBs are constantly being discovered, the Swift observing schedule is revised on a daily basis. Note that Highest priority ToOs are particularly difficult to handle at night and on weekends when the Mission Operations Center is not staffed. These should be avoided in all but the most urgent cases (e.g., transient events like a Galactic SN, a very bright GeV gamma-ray burst, or a giant SGR flare).

It is the responsibility of the PI to alert the Swift Observatory Duty Scientist when trigger conditions for their accepted ToO have been met. This is done through the Swift ToO Request Form at https://www.swift.psu.edu/secure/toop/too_request.htm. It is highly recommended that ToO proposers register as Swift ToO users in advance at https://www.swift.psu.edu/secure/toop/too_newuser.htm. Registration is required in order to submit a ToO Request.

ToO proposals must have an astrophysical trigger. Once the trigger criteria have been met for an approved target, the PI should check if the target location is more than 5 hours in RA from the Sun and more than 20 degrees from the Moon before requesting Swift observations (http://heasarc.gsfc.nasa.gov/Tools/Viewing.html). ToO observations that require more than 6 ks on a given day and are closer to the Sun than 5 hours RA will be less likely to be approved unless they are of exceptionally high scientific priority. Observations greater than 9 hours in RA from the Sun are particularly desirable. The purpose of the anti-Sun restriction for ToOs is to maximize the amount of time Swift is pointed toward the night sky in order to optimize optical follow-up observations of BAT-detected GRBs.

Accepted Cycle 8 ToO proposals may be triggered until March 31, 2013. GIs whose ToO programs do not trigger in Cycle 8 will be required to repropose in later cycles should they wish to acquire observing time on their targets of interest.

Note that unsolicited ToO requests for exceptional transients will continue to be possible through the Swift ToO web site, even for those not accepted into the GI Program. The decision on
whether or not to observe a ToO of either category will be made by the Swift Principal Investigator or his official designee. Such ToO requests are unfunded.

1.3.6 Large Programs

Proposals requesting more than 100 targets or more than 100 ks total exposure time are defined as Large Programs. A total of up to 1 Ms exposure time has been reserved for Large Programs, subject to the submission of proposals of high scientific merit.

Both long-duration observations of single targets, tiling of extended sources that exceed the fields of view of the Swift XRT and UVOT instruments, or shorter duration observations of many targets can be requested in the Large Programs proposal category. Proposers should be aware that, due to Swift’s low Earth orbit (95 minute orbit period) and scheduling priorities for other objects, any long observation exceeding a few kiloseconds will be broken up into several different pointings on different orbits.

The observations proposed for Large Programs must be completed within the 12-month period covered by this Cycle.

1.3.7 Swift "Fill-in" Targets

PIs may submit a list of targets for consideration as "Fill-in" targets. Their purpose is to provide a set of peer-reviewed targets to be used to fill in gaps in the planned science timeline. These must not be ToOs, must have no observational constraints, and can only be observed once (no multiple observations of the same target). The requested total integration time per target must be between a minimum of 1 ks and a maximum of 40 ks. Accepted targets will be added to the Swift observing program at the discretion of the science operations team. They will be scheduled, as needed, around the higher priority GRB follow-up observations, ToO and non-ToO observations, to maximize the Swift science program. Funding will be contingent upon at least one target being observed for no less than 80% of the requested time. **No funding will be provided for proposals in the "Fill-in" category.** Although PIs should have no expectation that their entire list of “Fill-in” targets will be observed, past experience has shown that fill-in proposals are usually undersubscribed and do get done. Due to the nature of Swift science planning, Swift GI “Fill-in” observations will be scheduled only about 24 hours prior to observation, and PIs will not be notified until observations have been completed for a given target. Scheduling information will be available to PIs via the daily observing plan (http://www.swift.psu.edu/operations/obsSchedule.php).

To reiterate:

- Fill-in targets are not ToOs and cannot be triggered;
- Fill-in targets cannot be time constrained;
- No monitoring is allowed with fill-in targets. Proposers cannot request multiple target visits but they can request more than 100 fill-in targets per proposal; and
• Fill-in targets are scheduled at the convenience of the science planners. There is no guarantee that any of the targets in any fill-in program will be scheduled or completely observed in this Cycle.

2. Programmatic Information

2.1 General Information

It is anticipated that approximately $700K-1.6M will be available through this solicitation for the support of approximately 25-50 Guest Investigations of one-year duration each. Swift non-GRB pointed observations are open to all scientists at U.S. or non-U.S. institutions. Swift GI funding is open to all individuals who are identified as principal investigators and employed at U.S. institutions, including Swift science team members. Scientists participating in the Swift mission, including Associate Scientists and members of the Follow-up Team who are not funded by the Project, are eligible for support under this GI Program. Swift science team members who already receive support from the Project must provide a compelling justification for the award of additional funds under the GI Program.

2.2 Proposal Submission and Evaluation

2.2.1 Submission of Proposals to the Swift GI Program

The Swift GI program uses a two-phase proposal process. A Phase 1 proposal shall comprise the science/technical justification; a brief management section, if funding is requested; a total budget; and a corresponding basis for this total budget. The science/technical justification should contain a brief description of previous Swift programs carried out by the PI. Only proposers whose Phase 1 proposals are accepted will be invited to submit budget proposals in Phase 2. All proposal materials will be submitted electronically.

Each proposer who anticipates requesting funding must plan an investigation that can be accomplished within a budget of about $40K (total cost to NASA, including overhead). The average budget for "Fill-in" proposals is 20 K.

No funding will be provided for proposals in the "Fill-in" category. Proposals requesting more than the average budget will need to provide a detailed cost justification. This includes proposals in the “high-z GRB” and Large Programs categories. The amount of the anticipated funding request must be entered into the box provided for this purpose on the Remote Proposal System (RPS) Cover Form. The detailed cost evaluation will be deferred until Phase 2. The funding amount requested in the Phase 2 cost proposal may not exceed the amount proposed in Phase 1.

Proposers to the Swift GI Program must adhere to the following proposal submission procedures:

• All Proposers must submit their Phase 1 proposals electronically through the ARK/RPS website at http://heasarc.gsfc.nasa.gov/ark/rps/. Instructions for doing so are provided at the SSC web site, http://swift.gsfc.nasa.gov/;
• Target forms for all observation proposals are to be submitted through ARK/RPS;
• Due to the nature of prospective investigations within the Swift GI program, the Scientific/Technical/Management section of proposals is limited to 4 pages (6 pages for "high-z GRB" proposals), instead of the default 15 pages specified in the NASA Guidebook for Proposers. The requirement for a table of contents in the body of the proposal is waived. No supporting material (e.g., CV, pending/current support) is required or allowed;
• Optional Latex and MS Word templates for the Scientific/Technical/Management section are provided on the SSC web site at http://swift.gsfc.nasa.gov/; and
• The Scientific/Technical/Management section must be uploaded to the RPS website as a PDF file.

All proposal materials must be submitted electronically by 4:30 p.m. Eastern time on the due date for this program given in Section 3 in order to be included in the proposal review for this cycle of the Swift Guest Investigator program. Note that the 4:30 p.m. deadline supersedes the deadline stated in the Guidebook for Proposers and in the ROSES Summary of Solicitation.

NASA uses a single, uniform set of instructions for the submission of ROSES proposals. These instructions are given in the NASA Guidebook for Proposers (http://www.hq.nasa.gov/office/procurement/nraguidebook/). Swift GI Proposers should follow these instructions, except where they are overridden by the instructions given in the ROSES Summary of Solicitation or in this Appendix.

2.2.2 Evaluation of Proposals submitted to the Swift GI Program

Proposals will be evaluated by a peer evaluation panel with respect to the criteria specified in Section C.2 of the NASA Guidebook for Proposers, where it is understood that the intrinsic merit of a proposal shall include the following factors:

• The suitability of using the Swift observatory and data products for the proposed investigation;
• The extent to which the investigation complements and enhances the anticipated science return from the Swift mission;
• The degree to which the proposed investigation places demands upon mission resources;
• The degree to which the proposed investigation capitalizes on the unique capabilities of Swift; and
• For theoretical investigations, the degree to which the investigation directly advances Swift science goals.

2.2.3 Submission and Evaluation of Phase 2 proposals

Subject to the availability of funding, successful Phase 1 proposers will be contacted by the Swift Program Officer and invited to submit a cost proposal in Phase 2. Upon notification of selection of a Phase 1 proposal, a proposer must respond as follows:
Follow the instructions for submitting a Phase 2 proposal given in the selection notification from the Phase 1 review. Phase 2 (cost) proposals must be submitted through the NASA NSPIRES electronic proposal website (http://nspires.nasaprs.com) by an Authorized Organizational Representative (AOR) of the proposing organization according to the instructions in the Summary of Solicitation of this NRA. The cost proposal will consist of a Budget Details (maximum of two pages) section and a Narrative section (maximum of two pages).

NASA program personnel will evaluate the Phase 2 cost proposals against the third evaluation criterion, cost realism and reasonableness. Comparison of the proposed cost to available funds will be performed as specified in Section C.2 of the NASA Guidebook for Proposers.

2.3 Supplemental Information

Further details concerning the proposal submission requirements and process can be found at the Swift Science Center website http://swiftsc.gsfc.nasa.gov/. This website provides a detailed mission description; technical information about the Swift mission, instruments, and observation feasibility; and instructions for completing the required proposal forms.

3. Summary of Key Information

<p>| Expected program budget for first year of new awards | ~$700K |
| Number of new awards pending adequate proposals of merit | ~25 |
| Maximum duration of awards | 1 year |
| Supplemental EPO Eligibility | No |
| Due date for Notice of Intent to propose (NOI) | Option not available |
| Due date for proposals | September 28, 2011 |
| Planning date for start of investigation | Funding will be awarded when the data are made available to the PI. NASA center proposers should use June 1, 2012 (2 months after start of Cycle 8 observing) as a planning date for start of observation |
| Page limit for Phase 1 proposals | 4 pages for all proposal categories except for proposals submitted in the “High-z GRB” category, which are allowed up to 6 pages. LaTeX and MS Word templates (available for download at http://swift.gsfc.nasa.gov) can be used for the proposals. No supporting material (e.g., CV, pending/current support) will be considered for Phase 1. Page limits include figures and references. This instruction supersedes the limits given in the NASA Guidebook for Proposers. |</p>
<table>
<thead>
<tr>
<th>Relevance</th>
<th>This program is relevant to the astrophysics strategic goals and subgoals in NASA’s Strategic Plan; see Table 1 and the references therein. Proposals that are relevant to this program are, by definition, relevant to NASA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General information and overview of this solicitation</td>
<td>See the ROSES Summary of Solicitation.</td>
</tr>
<tr>
<td>Submission medium</td>
<td>Electronic proposal submission is required in PDF format; no hard copy is required. See Section IV of the ROSES Summary of Solicitation and Chapter 3 of the NASA Guidebook for Proposers.</td>
</tr>
<tr>
<td>Web site for submission of Notice of Intent to propose (NOI)</td>
<td>Option not available</td>
</tr>
<tr>
<td>Web site for submission of Phase 1 proposal via NSPIRES</td>
<td>Option not available</td>
</tr>
<tr>
<td>Web site for submission of Phase 1 proposal via Grants.gov</td>
<td>Option not available</td>
</tr>
</tbody>
</table>
| Programmatic information may be obtained from the Swift Program Scientist | Ilana M. Harrus
Astrophysics Division
Science Mission Directorate
NASA Headquarters
Washington, DC 20546-0001
Telephone: (202) 358-1250
E-mail: Ilana.M.Harrus@nasa.gov |
| Technical questions concerning this program element may be directed to the Swift Guest Investigator Program | Stefan Immler
Swift Guest Investigator Program
Code 662
Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, MD 20771-0001
Telephone: (301) 286-0072
Email: swifthelp@athena.gsfc.nasa.gov |